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Toy example, introduction to the problem

• 2D Darcy flow problem
−div (k (x ; Z ) · ∇u (x ; Z )) = f (x ; Z ) , ∀x ∈ D
u (x ; Z ) = uD (x ; Z ) , ∀x ∈ ΓD

∂u(x ;Z)
∂n(x) = uN (x ; Z ) , ∀x ∈ ΓN

,

Z can be understood as Z : Ω→ RM and k (x ; Z ),

u (x ; Z ) : D × RM → R
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Motivation, intrusive and non-intrusive approaches

• non-intrusive approaches examines only point values of the solution

(much easier to deploy)

• PDE solution in fixed values of the parameter is handled as

black-box by an existing software

• Collocation or Monte Carlo methods

• stochastic Galerkin (SG) method is an intrusive approach

• needs new framework for the solution of given problems

• it provides error estimates
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Recapitulation of Random

variable and Probability measure



Random variables and probability measure

• continuous random variable Z is a map from sample space Ω→ R
• can be described by probability density f : R→ R+

0 ,
´
R
f (x) dx = 1

• distribution of a random variable defines a probability measure

• in the case of a continuous random variableˆ

R

. . . dFZ =

ˆ

R

. . . f (x) dx = EZ (. . .)
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Random vector

• is a vector of M (let assume continuous) random variables

Z = (Z1, . . . ,ZM)

• can be described by joint probability density fZ : RM → R+
0 ,´

RM

f (x) dx = 1

• random vector of independent random variables has joint probability

density in form

fZ (z) =
M∏
i=1

fZi (zi )
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L2 spaces defined by a random vector

• square integrable functions of a random vector Z creates space

L2dFZ
(
RM
)

:=

f : RM → R :

ˆ

RM

f (z)2 dFZ <∞


• with inner product

(u, v) :=

ˆ

RM

u (z) · v (z) dFZ = EZ (u (Z ) · v (Z ))
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Polynomial chaos in 1d

• orthogonal polynomial basis of L2dFZ

• polynomial chaos with respect to a random variable Z

• set of polynomials of increasing degree ψi (Z ) (i denotes degree of

polynomial)

• orthogonal = satisfying EZ (ψi (Z )ψj (Z )) = γiδij , where

γi = EZ

(
ψi (Z )2

)
• generates basis of L2dFZ (R)
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Polynomial chaos Nd

• assume random vector Z of independent random variables

• polynomial chaos for L2dFZ
(
RM
)

can be created by a product of 1d

polynomials of Zi

Ψi (Z ) =
M∏
k=1

ψik (Zk) ,

where i denotes the multi-index of size M.

tensor product polynomials of maximal degree n are polynomials with

ik ≤ n,∀k = 1, . . . ,M

complete polynomials of maximal degree n are polynomials with

|i | =
M∑
k=1

ik ≤ n
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Complete vs. tensor polynomials
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Figure 1: Error dependence on the max. degree of the PC basis
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Figure 2: Error dependence on the size of the PC basis
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Three term recurrence relation

Let {ψi} , ψ−1 = 0, ψ0 = 1 be polynomials related to probability measure

dFZ (single random variable), then

ψi+1 (Z ) = (Z − αi )ψi (Z )− βiψi−1 (Z ) ,

αi =
EZ (Zψi (Z )ψi (Z ))

EZ (ψi (Z )ψi (Z ))
, βi =

EZ (ψi (Z )ψi (Z ))

EZ (ψi−1 (Z )ψi−1 (Z ))

• evaluation of orthogonal polynomials of higher degree can be

numerically unstable

• do not evaluate weights of the polynomials (a0 + a1x + . . .),

numerically unstable (infeasible for degree 20 and more in int32)

• recurrence formula for computing the point values of the polynomial

is favorable
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Hermite polynomials

• polynomial chaos basis for standard normal random variable consist

of Hermite polynomials

•
ψi+1 (Z ) = 2Zψi (Z )− iψi−1 (Z )
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Structure of the problem,

discretization and suitable

problems



Model problem again

• 2D Darcy flow problem
−div (k (x ; Z ) · ∇u (x ; Z )) = f (x ; Z ) , ∀x ∈ D
u (x ; Z ) = uD (x ; Z ) , ∀x ∈ ΓD

∂u(x ;Z)
∂n(x) = uN (x ; Z ) , ∀x ∈ ΓN

,

Z can be understood as Z : Ω→ RM and k (x ; Z ),

u (x ; Z ) : D × RM → R
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Coupled and uncoupled systems

• randomness in f and boundary conditions affects the right hand side

• if k is deterministic, we obtain decoupled system = matrix of the

resulting system of equations is block diagonal

• randomness in material k affects the matrix of the resulting system

of equations

• we obtain coupled system
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Model problem

• 2D Darcy flow problem
−div (k (x ; Z ) · ∇u (x ; Z )) = f (x) , ∀x ∈ D
u (x ; Z ) = uD (x) , ∀x ∈ ΓD

∂u(x ;Z)
∂n(x) = uN (x) , ∀x ∈ ΓN

,

Z can be understood as Z : Ω→ RM and k (x ; Z ),

u (x ; Z ) : D × RM → R
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Tensor product spaces

• we can view k (x ; Z ), u (x ; Z ) from the perspective of Monte Carlo

sampling

• sample of Z (e.g. Z̃) gives us a sample of k
(
x ; Z̃

)
∈ L∞ (D) and

u
(
x ; Z̃

)
∈ H1 (D)

• than u (x ; Z ) ∈ L2dFZ
(
RM ,H1 (D)

)
L2dFZ

(
RM ,H1 (D)

)
:=

f : RM → H1 (D) :

ˆ

RM

‖f (Z )‖2H1(D) dFZ <∞


• L2dFZ

(
RM ,H1 (D)

)
is isometrically isomorphic with tensor product

space H1 (D)⊗ L2dFZ
(
RM
)
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Weak formulation, separable structure

• we want to find the solution in the space V = VD ⊗ VS

(VD = H1 (D) ,VS = L2dFZ
(
RM
)
)

• we need to solve the following{
Find u =

∑∞
i=1 uD,i · uS,i ∈ VD ⊗ VS , ∀vD ∈ VD , vS ∈ VS :

a (u, v) = b (v) , v = vD · vS
,

a (u, v) := a (uD · uS , vD · vS) =
R∑

r=1

aD,r (uD , vD) · aS,r (uS , vS)

b (v) := b (vD · vS) =
S∑

r=1

bD,r (vD) · bS,r (vS)
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Model problem and Galerkin discretization

a (u, v) :=

ˆ

RM

ˆ

D

k (x ; Z ) · ∇xu (x ; Z ) · ∇xv (x ; Z ) dx dFZ ,

b (v) :=

ˆ

RM

ˆ

D

f (x) · v (x ; Z ) dx dFZ ,

• we use discretization as tensor product of basis functions on domain

and basis functions on sample space

〈ϕ1 (x) , . . . , ϕND
(x)〉� 〈ψ1 (Z ) , . . . , ψNP

(Z )〉 ⊂ VH :

〈ϕ1 (x) , . . . , ϕND
(x)〉 ⊂ H1

0 (D) and

〈ψ1 (Z ) , . . . , ψNP
(Z )〉 ⊂ L2dFZ

(
RM
)

• As basis functions on physical domain we can take standard finite

elements functions (piece-wise linear)

• For basis functions on sample (random parameter) space we choose

polynomial chaos basis
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Preferable forms of material field

• recall the

a (u, v) :=

ˆ

RM

ˆ

D

k (x ; Z ) · ∇xu (x ; Z ) · ∇xv (x ; Z ) dx dFZ

• if we have separable form of the material field

k (x ; Z ) =
N∑

m=1

km (x) · gm (Z )

• than resulting system of equation is also separable

(A)ij,kl =
N∑

m=1

ˆ
D

km (x)∇ϕj (x)∇ϕl (x) dx

·
ˆ

RM

gm (Z)ψi (Z)ψk (Z) dFZ

 ,
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Preferable forms of material field, how to achieve them

• it is natural for the Karhunen-Loève decomposition of the random

field

k (x ; Z ) =
M∑

m=1

ki (x) · Zi

or material field with given interfaces

• in other cases it can be obtained by a projection into polynomial

chaos

k (x ; Z ) ≈
N∑

m=1

ki (x) ·Ψi (Z )
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System of equations and

assembly



Out-coming system of equations - model problem

• After discretization we get following Galerkin system of equations:

A · uH = b,

(A)ij,kl =
N∑

m=1

ˆ

D

km (x)∇ϕj (x)∇ϕl (x) dx ·
ˆ

RM

gm (Z)ψi (Z)ψk (Z) dFZ ,

A =
N∑

m=1

Gm ⊗ Km,

(Km)ij =

ˆ

D

km (x)∇ϕi (x) · ∇ϕj (x) dx ,

(Gm)ij =

ˆ

RM

gm (Z )ψi (Z )ψj (Z ) dFZ .
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Out-coming system of equations - model problem

b = g ⊗ f

(g)i =

ˆ

RM

ψi (Z ) dFZ

in this case g has only one nonzero value in the first position(
f
)
i

=

ˆ

D

f (x) · ϕi (x) dx

• Note: with non-homogeneous boundary conditions the r.h.s will have

the general form

b =
NN∑
i=1

gi ⊗ fi
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Matrix: stiffness matrix of blocks

0 50 100 150

nz = 5900

0

50

100

150

Figure 3: Permuted system matrix for physical domain discretization 4x4 and

10 polynomial chaos basis function
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Matrix: blocks of stiffness matrix

0 50 100 150

nz = 5900

0
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150

Figure 4: System matrix for physical domain discretization 4x4 and 10

polynomial chaos basis function
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Examples of sparsity pattern

Figure 5: Sparsity pattern of Gi ,gi = exp (Zi )
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Examples of sparsity pattern

Figure 6: Sparsity pattern of
∑

i Gi
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Assembly of Gi for gi = exp (Zi)

assume normalized Hermite polynomials ψi (Z ) =
∏M

j=1 ψi,j (Zj)

(Gm)k,l =

ˆ
RM

ψk (Z)ψl (Z) exp (amZm + bm) dFZ =

ˆ
R
ψk,m (Zm)ψl,m (Zm) exp (amZm + bm) dFZm

∏
i 6=m

ˆ
R
ψk,i (Zi )ψl,i (Zi ) dFZi ,

where
∏

i 6=m

´
R ψk,i (Zi )ψl,i (Zi ) dFZi is either 0 if some of the

polynomials ψk,i do not equal ψl,i or 1 otherwise. The rest of the formula

can be evaluated according to the followingˆ
R
f (Z) exp (aZ + b) dFZ =

ˆ
R
f (Z) exp (aZ + b)

1√
2π

exp

(
−Z 2

2

)
dZ =

exp

(
a2

2
+ b

) ˆ
R
f (Z)

1√
2π

exp

(
− (Z − a)2

2

)
dZ = exp

(
a2

2
+ b

) ˆ
R
f (Z) dFZ̃ ,

where Z̃ ∼ N (a, 1) .´
R f (Z ) dF Z̃ can be precisely computed using the Gauss-Hermite

quadrature rule or evaluated analytically (if f is polynomial), but the

analytic formula can be numerically unstable.
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Tensor form matrix multiplication

A =
N∑

m=1

Gm ⊗ Km,

Matrix multiplication

Ax = vec

(
N∑

m=1

Kmx̃G
T
m

)
,

where x̃ is reshaped x into a matrix of corresponding dimensions.
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Approaches to the solution of

the system



Overview of approaches

• Krylov method with a suitable preconditioner with a low-rank

compression in each iteration [7, 2, 4, 6]

• preconditioners: block diagonal [15], Kronecker [18] hierarchical

Schur [17]

• Generalized Spectral Decomposition, where the problem is treated as

an extended eigenvalue problem and the solution is built using the

power-type method [10, 9, 14, 11, 13, 12] (even nonlinear problems)

• low rank tensor approximation (also for multiple independent

parameters): approximates the solution using the tensor train or

hierarchical Tucker format [5, 1, 3].

• reduced basis (RB) approach - construction of the RB using

the rational Krylov approximations [16]; using MC sampling [19],

using sampling via sparse grids is presented in [8]
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Reduced basis

• assume a low rank approximation of the solution

x ≈ xk = Wkyk ,

where Wk = [w1, . . . ,wk ] ∈ RNd×k is a Reduced basis of size k (k

orthonormal vectors)

• here Wk approximates “deterministic” part of the solution x (given

by matrices Km)

• matrix yk can be obtained using the Galerkin condition on the

residual of xk

Rk :=
M∑

m=1

Km (Wkyk)GT
m −

M∑
m=1

fmg
T
m

W T
k Rk = 0⇒

M∑
m=1

W T
k KmWkykG

T
m =

M∑
m=1

W T
k fmg

T
m

which is a system of equations of much lower dimension (can be

easily solved by e.g. PCG)
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Reduced basis solver



Low rank approximation of the solution

• assume a low rank approximation of the solution

x ≈ xk = Wkyk ,

where Wk = [w1, . . . ,wk ] ∈ RNd×k is a Reduced basis of size
k (k orthonormal vectors)

• here Wk approximates “deterministic” part of the solution x
(given by matrices Km)

• matrix yk can be obtained using the Galerkin condition on the

residual of xk

Rk :=
M∑

m=1

Km (Wkyk)GT
m −

M∑
m=1

fmg
T
m

W T
k Rk = 0⇒

M∑
m=1

W T
k KmWkykG

T
m =

M∑
m=1

W T
k fmg

T
m
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Reduced rational Krylov subspaces



Reduced rational Krylov subspace (RRKS)

• series of symmetric positive definite (SPD) matrices

{Km}m=1,...,M and a nonzero vector v

• the first iteration generates addition to the basis:〈
K−1
1 v , . . . ,K−1

M v
〉

• the second iteration generate addition to the basis:〈
K−1
1 K−1

1 v ,K−1
1 K−1

2 v , . . . , K−1
M K−1

M−1v ,K
−1
M K−1

M v
〉
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Building the reduced basis

• starting vector from f̂m = K−1
0 fm

• using matrices
{
K−1
0 (Km + αmK0)

}
• full RRKS scheme is impractical because in each subsequent

iteration we need to construct larger bases

• the remedy to this is to iteratively select a vector v from the

current basis and expand the basis only by the first iteration

of the RRKS
• during the orthogonalisation step, calculate weights

corresponding to the norm of independent part of the vector
• next direction according to the calculated weights

Powell, C. E.; Silvester, D.; Simoncini, V.: An efficient reduced

basis solver for stochastic Galerkin matrix equations. 2017

Béreš, M.: An Efficient Reduced Basis Construction for

Stochastic Galerkin Matrix Equations Using Deflated

Conjugate Gradients. 2018
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RRKS convergence - different α
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Figure 1: different values of α (degree 4, grid level 10)
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RB convergence - polynomial degree
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Figure 2: different maximal degree of polynomial chaos (grid lvl 10)
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RB convergence - finite element grid
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Figure 3: different grid levels (polynomial degree 4)
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Monte Carlo sampling



Crude MC and random process avoiding previous samples

We compare two random sampling procedures

• Crude MC

• Sampling using random process, which avoids already
generated samples (MCMC)

• assume sampling according to unscaled probability density

f (x)

• each consecutive sample Xi is generated according to unscaled

probability density

f̄ (x) = f (x)·min

{
1− exp

(
−1

2
(x − Xj)

T · Σ−1 · (x − Xj)

)}
j=1...i−1

• these samples are generated using Metropolis Hastings method

(we can take random sample of the chain, or the one with the

highest value of f̄ (x))

MB Introduction to the stochastic Galerkin 7/22



Unscaled probability density after 10 samples

Figure 4: Unscaled probability density after 10 samples (Σ = 10 · I )
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Sample comparison of crude MC and MCMC

Figure 5: left MCMC, right MC
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Reduced basis construction using random sampling

Loop until satisfactory reduced basis is obtained:

1. Propose n samples (MC or MCMC)

2. Calculate residual of reduced solution in this samples

3. Solve systems, using best N samples (largest residual error)

4. Add these N samples into the reduced basis (truncate if

needed)
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MC vs. MCMC number of proposal samples n
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Figure 6: different number of proposal samples n

MB Introduction to the stochastic Galerkin 11/22



MC vs. MCMC number of parallel solutions
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Figure 7: different number of parallel solutions N
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MCMC - polynomial degree
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Figure 8: different maximal degree of polynomial chaos (grid lvl 10)
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MCMC - grid lvl
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Figure 9: different grid levels (polynomial degree 4)
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MCMC vs. RRKS
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Figure 10: grid lvl 10, polynomial chaos degree 4
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Conclusions: MCMC vs. RRKS

MCMC:

• better convergence (same rate, but shifted)

• easier to implement (it is possible to call black box solvers)

• random (different runs can differ)

RRKS:

• it solves the same systems (much cheaper assembly of

systems and preconditioners)

• depends on the choice of α (can be difficult)
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Deflated conjugate gradients



Deflated conjugate gradients

• DCG method is an extension of the standard conjugate

gradient (CG or PCG if using a preconditioner) method

• DCG method takes an additional parameter in the form of the

deflation basis W (linearly independent, we will use

orthonormal).

• the deflation basis W should be able to describe the sought

solution reasonably well

• the DCG method looks for the solution outside of the

deflation basis W
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Deflated conjugate gradients

• DCG diference in comparison to the conjugate gradient
implementation:

• the residual of the initial guess should be orthogonal on W

(e.g. by using x0 = W
(
W TAW

)−1
W Tb )

• in each iteration the DCG projects the preconditioned residual

z̃i = Pzi using the projector P = I −W
(
W TAW

)−1
W TA

• in our case the reduced basis Wi in i-th iteration of RB solver

can be directly used as the deflation basis

• only significant additional cost compared to the standard CG
method is the solution of systems with Qi = W T

i AWi (in i-th
iteration of the RB solver)

• In our application, the size of the matrix Qi (corresponding to

a size of the RB) is reasonably small and we can use e.q. an

explicit inversion.
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Overview of tested preconditioners

• we test the solution of systems (Km + αK0) using: Schwarz,
diagonal and ichol preconditioner

• the Schwarz preconditioner was set using 30 subdomains =

equal column slices of our square domain of the size 1/20

• the incomplete Cholesky preconditioner was build with no

filling allowed

MB Introduction to the stochastic Galerkin 19/22



RRKS: DCG - results (number of iterations CG/DCG)
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Figure 11: Num. of the DCG iterations compared to the PCG (mean

DCG/PCG iterations per RB iter.)
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MCMC: DCG - results (number of iterations CG/DCG)
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Figure 12: Num. of the DCG iterations compared to the PCG (mean

DCG/PCG iterations per RB iter.)
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DCG - results (saved iterations in total)

Ad. Schwarz diagonal ichol (nofill)

RRKS savings in % 72.32% 73.47% 73.33%

MCMC savings in % 82.58% 83.48% 83.06%

Table 1: Computational savings using DCG with the RB as a deflation

basis
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