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Toy example, introduction to the problem

• 2D Darcy flow problem
−div (k (x ; Z ) · ∇u (x ; Z )) = f (x ; Z ) , ∀x ∈ D
u (x ; Z ) = uD (x ; Z ) , ∀x ∈ ΓD

∂u(x ;Z)
∂n(x) = uN (x ; Z ) , ∀x ∈ ΓN

,

Z can be understood as Z : Ω→ RM and k (x ; Z ),

u (x ; Z ) : D × RM → R
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Motivation, intrusive and non-intrusive approaches

• non-intrusive approaches examines only point values of the solution

(much easier to deploy)

• PDE solution in fixed values of the parameter is handled as

black-box by an existing software

• Collocation or Monte Carlo methods

• stochastic Galerkin (SG) method is an intrusive approach

• needs new framework for the solution of given problems

• it provides error estimates
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Recapitulation of Random

variable and Probability measure



Random variables and probability measure

• continuous random variable Z is a map from sample space Ω→ R
• can be described by probability density f : R→ R+

0 ,
´
R
f (x) dx = 1

• distribution of a random variable defines a probability measure

• in the case of a continuous random variableˆ

R

. . . dFZ =

ˆ

R

. . . f (x) dx = EZ (. . .)
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Random vector

• is a vector of M (let assume continuous) random variables

Z = (Z1, . . . ,ZM)

• can be described by joint probability density fZ : RM → R+
0 ,´

RM

f (x) dx = 1

• random vector of independent random variables has joint probability

density in form

fZ (z) =
M∏
i=1

fZi (zi )
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L2 spaces defined by a random vector

• square integrable functions of a random vector Z creates space

L2dFZ
(
RM
)

:=

f : RM → R :

ˆ

RM

f (z)2 dFZ <∞


• with inner product

(u, v) :=

ˆ

RM

u (z) · v (z) dFZ = EZ (u (Z ) · v (Z ))
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Polynomial chaos in 1d

• orthogonal polynomial basis of L2dFZ

• polynomial chaos with respect to a random variable Z

• set of polynomials of increasing degree ψi (Z ) (i denotes degree of

polynomial)

• orthogonal = satisfying EZ (ψi (Z )ψj (Z )) = γiδij , where

γi = EZ

(
ψi (Z )2

)
• generates basis of L2dFZ (R)
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Polynomial chaos Nd

• assume random vector Z of independent random variables

• polynomial chaos for L2dFZ
(
RM
)

can be created by a product of 1d

polynomials of Zi

Ψi (Z ) =
M∏
k=1

ψik (Zk) ,

where i denotes the multi-index of size M.

tensor product polynomials of maximal degree n are polynomials with

ik ≤ n,∀k = 1, . . . ,M

complete polynomials of maximal degree n are polynomials with

|i | =
M∑
k=1

ik ≤ n
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Complete vs. tensor polynomials
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Figure 1: Error dependence on the max. degree of the PC basis
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Figure 2: Error dependence on the size of the PC basis
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Three term recurrence relation

Let {ψi} , ψ−1 = 0, ψ0 = 1 be polynomials related to probability measure

dFZ (single random variable), then

ψi+1 (Z ) = (Z − αi )ψi (Z )− βiψi−1 (Z ) ,

αi =
EZ (Zψi (Z )ψi (Z ))

EZ (ψi (Z )ψi (Z ))
, βi =

EZ (ψi (Z )ψi (Z ))

EZ (ψi−1 (Z )ψi−1 (Z ))

• evaluation of orthogonal polynomials of higher degree can be

numerically unstable

• do not evaluate weights of the polynomials (a0 + a1x + . . .),

numerically unstable (infeasible for degree 20 and more in int32)

• recurrence formula for computing the point values of the polynomial

is favorable
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Hermite polynomials

• polynomial chaos basis for standard normal random variable consist

of Hermite polynomials

•
ψi+1 (Z ) = 2Zψi (Z )− iψi−1 (Z )
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Structure of the problem,

discretization and suitable

problems



Model problem again

• 2D Darcy flow problem
−div (k (x ; Z ) · ∇u (x ; Z )) = f (x ; Z ) , ∀x ∈ D
u (x ; Z ) = uD (x ; Z ) , ∀x ∈ ΓD

∂u(x ;Z)
∂n(x) = uN (x ; Z ) , ∀x ∈ ΓN

,

Z can be understood as Z : Ω→ RM and k (x ; Z ),

u (x ; Z ) : D × RM → R
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Coupled and uncoupled systems

• randomness in f and boundary conditions affects the right hand side

• if k is deterministic, we obtain decoupled system = matrix of the

resulting system of equations is block diagonal

• randomness in material k affects the matrix of the resulting system

of equations

• we obtain coupled system
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Model problem

• 2D Darcy flow problem
−div (k (x ; Z ) · ∇u (x ; Z )) = f (x) , ∀x ∈ D
u (x ; Z ) = uD (x) , ∀x ∈ ΓD

∂u(x ;Z)
∂n(x) = uN (x) , ∀x ∈ ΓN

,

Z can be understood as Z : Ω→ RM and k (x ; Z ),

u (x ; Z ) : D × RM → R
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Tensor product spaces

• we can view k (x ; Z ), u (x ; Z ) from the perspective of Monte Carlo

sampling

• sample of Z (e.g. Z̃) gives us a sample of k
(
x ; Z̃

)
∈ L∞ (D) and

u
(
x ; Z̃

)
∈ H1 (D)

• than u (x ; Z ) ∈ L2dFZ
(
RM ,H1 (D)

)
L2dFZ

(
RM ,H1 (D)

)
:=

f : RM → H1 (D) :

ˆ

RM

‖f (Z )‖2H1(D) dFZ <∞


• L2dFZ

(
RM ,H1 (D)

)
is isometrically isomorphic with tensor product

space H1 (D)⊗ L2dFZ
(
RM
)
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Weak formulation, separable structure

• we want to find the solution in the space V = VD ⊗ VS

(VD = H1 (D) ,VS = L2dFZ
(
RM
)
)

• we need to solve the following{
Find u =

∑∞
i=1 uD,i · uS,i ∈ VD ⊗ VS , ∀vD ∈ VD , vS ∈ VS :

a (u, v) = b (v) , v = vD · vS
,

a (u, v) := a (uD · uS , vD · vS) =
R∑

r=1

aD,r (uD , vD) · aS,r (uS , vS)

b (v) := b (vD · vS) =
S∑

r=1

bD,r (vD) · bS,r (vS)
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Model problem and Galerkin discretization

a (u, v) :=

ˆ

RM

ˆ

D

k (x ; Z ) · ∇xu (x ; Z ) · ∇xv (x ; Z ) dx dFZ ,

b (v) :=

ˆ

RM

ˆ

D

f (x) · v (x ; Z ) dx dFZ ,

• we use discretization as tensor product of basis functions on domain

and basis functions on sample space

〈ϕ1 (x) , . . . , ϕND
(x)〉� 〈ψ1 (Z ) , . . . , ψNP

(Z )〉 ⊂ VH :

〈ϕ1 (x) , . . . , ϕND
(x)〉 ⊂ H1

0 (D) and

〈ψ1 (Z ) , . . . , ψNP
(Z )〉 ⊂ L2dFZ

(
RM
)

• As basis functions on physical domain we can take standard finite

elements functions (piece-wise linear)

• For basis functions on sample (random parameter) space we choose

polynomial chaos basis
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Preferable forms of material field

• recall the

a (u, v) :=

ˆ

RM

ˆ

D

k (x ; Z ) · ∇xu (x ; Z ) · ∇xv (x ; Z ) dx dFZ

• if we have separable form of the material field

k (x ; Z ) =
N∑

m=1

km (x) · gm (Z )

• than resulting system of equation is also separable

(A)ij,kl =
N∑

m=1

ˆ
D

km (x)∇ϕj (x)∇ϕl (x) dx

·
ˆ

RM

gm (Z)ψi (Z)ψk (Z) dFZ

 ,
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Preferable forms of material field, how to achieve them

• it is natural for the Karhunen-Loève decomposition of the random

field

k (x ; Z ) =
M∑

m=1

ki (x) · Zi

or material field with given interfaces

• in other cases it can be obtained by a projection into polynomial

chaos

k (x ; Z ) ≈
N∑

m=1

ki (x) ·Ψi (Z )
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System of equations and

assembly



Out-coming system of equations - model problem

• After discretization we get following Galerkin system of equations:

A · uH = b,

(A)ij,kl =
N∑

m=1

ˆ

D

km (x)∇ϕj (x)∇ϕl (x) dx ·
ˆ

RM

gm (Z)ψi (Z)ψk (Z) dFZ ,

A =
N∑

m=1

Gm ⊗ Km,

(Km)ij =

ˆ

D

km (x)∇ϕi (x) · ∇ϕj (x) dx ,

(Gm)ij =

ˆ

RM

gm (Z )ψi (Z )ψj (Z ) dFZ .
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Out-coming system of equations - model problem

b = g ⊗ f

(g)i =

ˆ

RM

ψi (Z ) dFZ

in this case g has only one nonzero value in the first position(
f
)
i

=

ˆ

D

f (x) · ϕi (x) dx

• Note: with non-homogeneous boundary conditions the r.h.s will have

the general form

b =
NN∑
i=1

gi ⊗ fi
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Matrix: stiffness matrix of blocks

0 50 100 150

nz = 5900

0

50

100

150

Figure 3: Permuted system matrix for physical domain discretization 4x4 and

10 polynomial chaos basis function
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Matrix: blocks of stiffness matrix

0 50 100 150

nz = 5900

0
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150

Figure 4: System matrix for physical domain discretization 4x4 and 10

polynomial chaos basis function
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Examples of sparsity pattern

Figure 5: Sparsity pattern of Gi ,gi = exp (Zi )
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Examples of sparsity pattern

Figure 6: Sparsity pattern of
∑

i Gi

MB Introduction to the stochastic Galerkin 25/29



Assembly of Gi for gi = exp (Zi)

assume normalized Hermite polynomials ψi (Z ) =
∏M

j=1 ψi,j (Zj)

(Gm)k,l =

ˆ
RM

ψk (Z)ψl (Z) exp (amZm + bm) dFZ =

ˆ
R
ψk,m (Zm)ψl,m (Zm) exp (amZm + bm) dFZm

∏
i 6=m

ˆ
R
ψk,i (Zi )ψl,i (Zi ) dFZi ,

where
∏

i 6=m

´
R ψk,i (Zi )ψl,i (Zi ) dFZi is either 0 if some of the

polynomials ψk,i do not equal ψl,i or 1 otherwise. The rest of the formula

can be evaluated according to the followingˆ
R
f (Z) exp (aZ + b) dFZ =

ˆ
R
f (Z) exp (aZ + b)

1√
2π

exp

(
−Z 2

2

)
dZ =

exp

(
a2

2
+ b

) ˆ
R
f (Z)

1√
2π

exp

(
− (Z − a)2

2

)
dZ = exp

(
a2

2
+ b

) ˆ
R
f (Z) dFZ̃ ,

where Z̃ ∼ N (a, 1) .´
R f (Z ) dF Z̃ can be precisely computed using the Gauss-Hermite

quadrature rule or evaluated analytically (if f is polynomial), but the

analytic formula can be numerically unstable.
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Tensor form matrix multiplication

A =
N∑

m=1

Gm ⊗ Km,

Matrix multiplication

Ax = vec

(
N∑

m=1

Kmx̃G
T
m

)
,

where x̃ is reshaped x into a matrix of corresponding dimensions.
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Approaches to the solution of

the system



Overview of approaches

• Krylov method with a suitable preconditioner with a low-rank

compression in each iteration [7, 2, 4, 6]

• preconditioners: block diagonal [15], Kronecker [18] hierarchical

Schur [17]

• Generalized Spectral Decomposition, where the problem is treated as

an extended eigenvalue problem and the solution is built using the

power-type method [10, 9, 14, 11, 13, 12] (even nonlinear problems)

• low rank tensor approximation (also for multiple independent

parameters): approximates the solution using the tensor train or

hierarchical Tucker format [5, 1, 3].

• reduced basis (RB) approach - construction of the RB using

the rational Krylov approximations [16]; using MC sampling [19],

using sampling via sparse grids is presented in [8]
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Reduced basis

• assume a low rank approximation of the solution

x ≈ xk = Wkyk ,

where Wk = [w1, . . . ,wk ] ∈ RNd×k is a Reduced basis of size k (k

orthonormal vectors)

• here Wk approximates “deterministic” part of the solution x (given

by matrices Km)

• matrix yk can be obtained using the Galerkin condition on the

residual of xk

Rk :=
M∑

m=1

Km (Wkyk)GT
m −

M∑
m=1

fmg
T
m

W T
k Rk = 0⇒

M∑
m=1

W T
k KmWkykG

T
m =

M∑
m=1

W T
k fmg

T
m

which is a system of equations of much lower dimension (can be

easily solved by e.g. PCG)
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Reduced basis solver



Low rank approximation of the solution

• assume a low rank approximation of the solution

x ≈ xk = Wkyk ,

where Wk = [w1, . . . ,wk ] ∈ RNd×k is a Reduced basis of size
k (k orthonormal vectors)

• here Wk approximates “deterministic” part of the solution x
(given by matrices Km)

• matrix yk can be obtained using the Galerkin condition on the

residual of xk

Rk :=
M∑

m=1

Km (Wkyk)GT
m −

M∑
m=1

fmg
T
m

W T
k Rk = 0⇒

M∑
m=1

W T
k KmWkykG

T
m =

M∑
m=1

W T
k fmg

T
m
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Reduced rational Krylov subspaces



Reduced rational Krylov subspace (RRKS)

• series of symmetric positive definite (SPD) matrices

{Km}m=1,...,M and a nonzero vector v

• the first iteration generates addition to the basis:〈
K−1
1 v , . . . ,K−1

M v
〉

• the second iteration generate addition to the basis:〈
K−1
1 K−1

1 v ,K−1
1 K−1

2 v , . . . , K−1
M K−1

M−1v ,K
−1
M K−1

M v
〉
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Building the reduced basis

• starting vector from f̂m = K−1
0 fm

• using matrices
{
K−1
0 (Km + αmK0)

}
• full RRKS scheme is impractical because in each subsequent

iteration we need to construct larger bases

• the remedy to this is to iteratively select a vector v from the

current basis and expand the basis only by the first iteration

of the RRKS
• during the orthogonalisation step, calculate weights

corresponding to the norm of independent part of the vector
• next direction according to the calculated weights

Powell, C. E.; Silvester, D.; Simoncini, V.: An efficient reduced

basis solver for stochastic Galerkin matrix equations. 2017

Béreš, M.: An Efficient Reduced Basis Construction for

Stochastic Galerkin Matrix Equations Using Deflated

Conjugate Gradients. 2018
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RRKS convergence - different α
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Figure 1: different values of α (degree 4, grid level 10)

MB Introduction to the stochastic Galerkin 4/22



RB convergence - polynomial degree
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Figure 2: different maximal degree of polynomial chaos (grid lvl 10)
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RB convergence - finite element grid
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Figure 3: different grid levels (polynomial degree 4)
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Monte Carlo sampling



Crude MC and random process avoiding previous samples

We compare two random sampling procedures

• Crude MC

• Sampling using random process, which avoids already
generated samples (MCMC)

• assume sampling according to unscaled probability density

f (x)

• each consecutive sample Xi is generated according to unscaled

probability density

f̄ (x) = f (x)·min

{
1− exp

(
−1

2
(x − Xj)

T · Σ−1 · (x − Xj)

)}
j=1...i−1

• these samples are generated using Metropolis Hastings method

(we can take random sample of the chain, or the one with the

highest value of f̄ (x))
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Unscaled probability density after 10 samples

Figure 4: Unscaled probability density after 10 samples (Σ = 10 · I )
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Sample comparison of crude MC and MCMC

Figure 5: left MCMC, right MC
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Reduced basis construction using random sampling

Loop until satisfactory reduced basis is obtained:

1. Propose n samples (MC or MCMC)

2. Calculate residual of reduced solution in this samples

3. Solve systems, using best N samples (largest residual error)

4. Add these N samples into the reduced basis (truncate if

needed)
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MC vs. MCMC number of proposal samples n
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Figure 6: different number of proposal samples n
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MC vs. MCMC number of parallel solutions
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Figure 7: different number of parallel solutions N
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MCMC - polynomial degree
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Figure 8: different maximal degree of polynomial chaos (grid lvl 10)
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MCMC - grid lvl
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Figure 9: different grid levels (polynomial degree 4)
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MCMC vs. RRKS
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Figure 10: grid lvl 10, polynomial chaos degree 4
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Conclusions: MCMC vs. RRKS

MCMC:

• better convergence (same rate, but shifted)

• easier to implement (it is possible to call black box solvers)

• random (different runs can differ)

RRKS:

• it solves the same systems (much cheaper assembly of

systems and preconditioners)

• depends on the choice of α (can be difficult)
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Deflated conjugate gradients



Deflated conjugate gradients

• DCG method is an extension of the standard conjugate

gradient (CG or PCG if using a preconditioner) method

• DCG method takes an additional parameter in the form of the

deflation basis W (linearly independent, we will use

orthonormal).

• the deflation basis W should be able to describe the sought

solution reasonably well

• the DCG method looks for the solution outside of the

deflation basis W
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Deflated conjugate gradients

• DCG diference in comparison to the conjugate gradient
implementation:

• the residual of the initial guess should be orthogonal on W

(e.g. by using x0 = W
(
W TAW

)−1
W Tb )

• in each iteration the DCG projects the preconditioned residual

z̃i = Pzi using the projector P = I −W
(
W TAW

)−1
W TA

• in our case the reduced basis Wi in i-th iteration of RB solver

can be directly used as the deflation basis

• only significant additional cost compared to the standard CG
method is the solution of systems with Qi = W T

i AWi (in i-th
iteration of the RB solver)

• In our application, the size of the matrix Qi (corresponding to

a size of the RB) is reasonably small and we can use e.q. an

explicit inversion.
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Overview of tested preconditioners

• we test the solution of systems (Km + αK0) using: Schwarz,
diagonal and ichol preconditioner

• the Schwarz preconditioner was set using 30 subdomains =

equal column slices of our square domain of the size 1/20

• the incomplete Cholesky preconditioner was build with no

filling allowed
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RRKS: DCG - results (number of iterations CG/DCG)
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Figure 11: Num. of the DCG iterations compared to the PCG (mean

DCG/PCG iterations per RB iter.)
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MCMC: DCG - results (number of iterations CG/DCG)
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Figure 12: Num. of the DCG iterations compared to the PCG (mean

DCG/PCG iterations per RB iter.)
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DCG - results (saved iterations in total)

Ad. Schwarz diagonal ichol (nofill)

RRKS savings in % 72.32% 73.47% 73.33%

MCMC savings in % 82.58% 83.48% 83.06%

Table 1: Computational savings using DCG with the RB as a deflation

basis
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