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Outline of the Thesis

1. Introduction
2. Optimization Overview

• convexity, projections, optimality, duality, descent direction
3. QP Algorithms Implementation and Benchmarks

• software, hardware, benchmarks
4. Unconstrained Quadratic Programming

• steepest descent and Barzilai-Borwein, CG, deflation
5. Projection-based QP Algorithms

• MPRGP, MPPCG + fallback, MPSPG, preconditioning
6. QP with Linear Equality Constraints

• KKT system-based methods, penalty, SMALE
7. QP with Linear Inequality Constraints

• dualization and FETI
8. Conclusion
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Quadratic Programming (QP) Problem

argmin
x

f (x) s.t. x ∈ Ω,

where
f (x) = 1

2
xTAx − xTb,

A is symmetric, Ω is closed and convex.

Here
argmin

x

1
2

xTAx − xTb s.t. l ≤ x, (1)

where A ∈ Rn×n is SPD.
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PERMON – Parallel, Efficient, Robust, Modular, Object-oriented, Numerical

• Collection of C libraries
• Based on/extends PETSc
• Open source (BSD-2-Clause license)
• Developed since 2011
• https://github.com/permon

• PermonQP

• General, massively parallel, QP solution framework
• QP problems, transformations, solvers
• FETI DDM implementation

• PermonSVM

• Library and binaries for the solution of linear SVMs
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PERMON in Applications

• DEMSI project uses PERMON QP algorithms for load balancing particles in ice
sheet melting simulations.

• HyTeG library can use PERMON to solve constrained FEM problems
• Flow123d library uses PERMON to solve mechanical contact subproblems in
hydro-mechanical problems

• SIFEL library can use PERMON to solve large scale mechanical contact
problems in structural engineering

• Wildfires detection from satellite images using PermonSVM
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Flow123d – HM Modelling of Excavating Borehole in Fractured Porous Medium

J. Stebel, J. Kruzik et al., ”On the parallel solution of hydro-mechanical problems
with fracture networks and contact conditions”, Computers & Structures (2024)
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Own Contribution to PERMON

• Main contributor and maintainer of PERMON since 2018
• 15 major releases from version 3.7 and a small number of minor releases

Nearly 60% of the repository overall commits (excluding merge commits) and
lines changed since the PERMON public development started in May, 2016 until
June, 2024. 8



Active/Free Set and Gradient Splitting

Active/Free set:

A(x) = {j : xj = lj} F(x) = {j : lj < xj}

Gradient splitting (g = Ax − b):

gf
j =

0 if j ∈ A,

gj if j ∈ F .
gc

j =

0 if j ∈ F ,

min(gj , 0) if j ∈ A,

Projected gradient:
gP = gf + gc

Projection onto the feasible set Ω:

[PΩ(x)]j = max(lj , xj).
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Modified Proportioning with Projected Conjugate Gradient (MPPCG) [JK 2020]

Input: A, x0 ∈ Ω, b, Γ > 0
1 g0 = Ax0 − b, p0 = gf

0 , k = 0
2 while ||gP

k || is not small:
3 if ||gc

k || ≤ Γ||gf
k ||:

4 Projected CG
5 else:
6 Proportioning step
7 k = k + 1
Output: xk

Proportioning step:
1 αk = gT

k gc
k/(gc

k )
TAgc

k
2 xk+1 = xk − αkgc

k
3 gk+1 = gk − αkAgc

k
4 pk+1 = gf

k+1
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Modified Proportioning with Projected Conjugate Gradient (MPPCG) [JK 2020]

Input: A, x0 ∈ Ω, b, Γ > 0
1 g0 = Ax0 − b, p0 = gf

0 , k = 0
2 while ||gP

k || is not small:
3 if ||gc

k || ≤ Γ||gf
k ||:

4 Projected CG
5 else:
6 Proportioning step
7 k = k + 1
Output: xk

Projected CG:
1 αfeas

k = max{α : xk − αpk ∈ Ω}
2 αcg

k = gT
k pk/pT

k Apk

3 xk+1 = xk − αcg
k pk

4 if αcg
k ≤ αfeas:
# CG step

5 gk+1 = gk − αcg
k Apk

6 βk = pT
k Agf

k+1/pT
k Apk

7 pk+1 = gf
k+1 − βkpk

8 else:
# Expansion step

9 xk+1 = PΩ(xk+1)

10 gk+1 = Axk+1 − b
11 pk+1 = gf

k+1
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Preconditioning

argmin
x

1
2

xTAx − xTb s.t. l ≤ x,

where A ∈ Rn×n is SPD.

Apply SPD preconditioner
M = LLT

argmin
u

1
2

uTL−1AL−Tu − uTL−1b s.t. l ≤ L−Tu,

with x = L−Tu.
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MPPCG with Preconditioning

Input: A, x0 ∈ Ω, b, Γ > 0, M
1 g0 = Ax0 − b, z0 = M−1gf

0 , p0 = z0, k = 0
2 while ||gP

k || is not small:
3 if ||gc

k || ≤ Γ||gf
k ||:

4 Projected CG
5 else:
6 Proportioning step
7 k = k + 1
Output: xk

Proportioning step:
1 αk = gT

k gc
k/(gc

k )
TAgc

k
2 xk+1 = xk − αkgc

k
3 gk+1 = gk − αkAgc

k
4 zk+1 = M−1gf

k+1
5 pk+1 = zk+1
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MPPCG with Preconditioning

Input: A, x0 ∈ Ω, b, Γ > 0, M
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k ||:

4 Projected CG
5 else:
6 Proportioning step
7 k = k + 1
Output: xk

Projected CG:
1 αfeas

k = max{α : xk − αpk ∈ Ω}
2 αcg

k = gT
k zk/pT

k Apk

3 xk+1 = xk − αcg
k pk

4 if αcg
k ≤ αfeas:

5 gk+1 = gk − αcg
k Apk

6 zk+1 = M−1gf
k+1

7 βk = pT
k Azk+1/pT

k Apk

8 pk+1 = zk+1 − βkpk

9 else:
10 xk+1 = PΩ(xk+1)

11 gk+1 = Axk+1 − b
12 zk+1 = M−1gf

k+1
13 pk+1 = zk+1
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Preconditioning in face [O’Leary 1980]

A is active set, F is free set

M =

(
MFF MFA

MAF MAA

)

Precondition only on the free set

z =

(
zf
F
o

)
= M−1

(
gf
F
o

)
=

(
M−1

FF o
o o

)(
gf
F
o

)
.
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Approximate Variant

z =

(
z̃f
F
o

)
= M−1

(
gf
F
o

)
= gradientSplitFree(M

−1
(

gf
F
o

)
)

assuming M−1is inverse

=

(
(MFF − MFAM−1

AAMAF )
−1gf

F
o

)
=

(
S−1gf

F
o

)

=

(
(M−1

FF + M−1
FFMFA(MAA − MAFM−1

FFMFA)
−1MAFM−1

FF )g
f
F

o

)

=

(
(I + M−1

FFMFA(MAA − MAFM−1
FFMFA)

−1MAF )M−1
FFgf

F
o

)

Let M = A and r = rank(MAF ) then the precondioned operator has eigenvalues

1 = λ1 = · · · = λn−r ≤ · · · ≤ λn
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Benchmarks and Parameters - PERMON Tutorials

Laplace 1D (ex1): Centred finite difference discretization of

−u′′(x) = −15, x ∈ [0, 1]
u(0) = u(1) = 0

s.t. u(x) ≥
sin(4πx − π

6 )

2
− 2, x ∈ [0, 1]

Journal Bearing (lubricant pressure distribution): P1 discretization of

argmin
v∈K

∫
D

(
1
2

wq(x)‖∇v(x)‖2 − wl(x)v(x)
)

dx,

K = {v ∈ H 1
0 (D) : v ≥ 0}, D = (0, 2π)× (0, 2d),

where wq(x1, x2) = (1 + ε cos x1)
3, wl(x1, x2) = ε sin x1, ε = 0.1 and d = 10.
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Benchmarks and Parameters

3D Linear Elasticity Contact Problem:

• bottom fixed
• pushed from above
• obstacle close to the right side
• Q1 discretization
• dual problem is solved

Parameters:

• rtol 1e−10
• α = 1.9||A||−1

• Γ = 1
Computed on LUMI supercomuter, AMD EPYC 7763 @ 2.45 GHz, single core, Cray clang 16 with -O3
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Eigenvalues – Inverse Precond. – Journal Bearing – 50x50 Grid Points (2500 DoFs)
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Inverse Preconditioner – 1D Laplace – 1,000 DoFs

103

104

κ(AFF )

κ(S−1AFF )

500

750

Freeset Size

0 100 200 300 400

Iteration

2

4

rank(AFA)
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Inverse Preconditioner – Journal Bearing – 400x25 Grid Points (10,000 DoFs)
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3D Cube Contact Problem with 20x40x80 Finite Elements (209,223 DoFs)

Method Type Precond. Hess. CG Exp. Prop. Time [s] SM

MPRGP None None 6544 3590 1472 9 88.51 1.00
MPRGP Face Cholesky 1818 6 903 5 14883.00 0.01
MPRGP Approx Cholesky 3095 44 1522 6 439.77 0.20
MPRGP Face ICC 4258 209 2020 8 594.58 0.15
MPRGP Approx ICC 5446 350 2544 7 102.93 0.86

MPPCG None None 2766 2269 244 8 37.93 2.33
MPPCG Face Cholesky 14 6 1 5 212.37 0.42
MPPCG Approx Cholesky 57 43 3 7 30.19 2.93
MPPCG Face ICC 344 212 60 11 72.38 1.22
MPPCG Approx ICC 473 297 84 7 10.38 8.53
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Journal Bearing Problem with 1600x100 Discretization Points (160,000 DoFs)

Method Type Precond. Hess. CG Exp. Prop. Time [s] SM

MPRGP None None 37044 28703 3844 652 60.14 1.00
MPRGP Face Cholesky 617 308 0 308 317.32 0.19
MPRGP Approx Cholesky 3612 244 1525 317 156.26 0.38
MPRGP Face ICC 987 357 159 311 12.91 4.66
MPRGP Approx ICC 6225 250 2738 498 14.06 4.28

MPPCG None None 25166 21632 1509 515 40.40 1.49
MPPCG Face Cholesky 617 308 0 308 317.43 0.19
MPPCG Approx Cholesky 887 379 93 321 59.38 1.01
MPPCG Face ICC 776 368 42 323 11.15 5.40
MPPCG Approx ICC 1976 238 564 609 4.47 13.46

23



Journal Bearing Problem with 1600x100 Discretization Points (160,000 DoFs)

Method Type Precond. Hess. CG Exp. Prop. Time [s] SM

MPRGP None None 37044 28703 3844 652 60.14 1.00
MPRGP Face Cholesky 617 308 0 308 317.32 0.19
MPRGP Approx Cholesky 3612 244 1525 317 156.26 0.38
MPRGP Face ICC 987 357 159 311 12.91 4.66
MPRGP Approx ICC 6225 250 2738 498 14.06 4.28
MPPCG None None 25166 21632 1509 515 40.40 1.49
MPPCG Face Cholesky 617 308 0 308 317.43 0.19
MPPCG Approx Cholesky 887 379 93 321 59.38 1.01
MPPCG Face ICC 776 368 42 323 11.15 5.40
MPPCG Approx ICC 1976 238 564 609 4.47 13.46

23



Thesis Outcome

Main results:

• Software (1 conf. paper):
• PERMON improvements, maintenance and user support
• PCDEFLATION – multilevel deflation preconditioner in PETSc

• Improvements of Algorithms (2 JIMP):
• MPRGP expansion modifications (MPPCG + fallback, MPSPG, MPSPGf) achieving
geometric mean of speedups of 2.9 - 6.25 on suitable benchmarks

• Approximate preconditioning in face for MPRGP-type methods achieving
speedups between 5.13 and 13.46
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Thesis Outcome

Other results (collaborations):

• Improvements to FETI-type methods (5 JIMP, 4 conf. papers):
• Projector-avoiding FETI
• Scalable strategies for FETI coarse problem
• Hybrid FETI/BETI method
• FETI preconditioners for elastoplasticity
• FETI for slope stability
• Node renumbering for FETI stiffness matrix factorization

• QP applications (2 JIMP, 1 conf. paper)
• Contact problems in (hydro)mechanics
• Linear SVM

• Unconstrained QP and preconditioning (1 JIMP, 1 conf. paper)
• Inner product free methods and preconditioners for 3 × 3 block matrices
• Schwarz DD preconditioners for Darcy flow

• Unrelated (1 JIMP, 4 conf. papers) 25



Outlook

• Publications:
• PERMON
• MPRGP Expansions (MPPCG fallback, MPSPG)
• Approximate in face preconditioner

• Research:
• Approximate in face preconditioner for contact problems in FETI
• SMALE stopping criteria

26



Thank you for your attention!
Any questions?
Jakub Kruzik
jakub.kruzik@vsb.cz

http://permon.vsb.cz

http://permon.vsb.cz


Q: In deflation algorithms, eigenvectors of various matrices are used. I did not find
the time needed for their computation. From my point of view, the time of the
computation of the eigenvectors has to be included to the total time needed for
solution of a problem. Users are interested in the wall clock time of computation.
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Figure 1: Weak scaling: Coarse problem solver setup + 1,000 coarse problem solves. One
subdomain is assigned to one core [?].
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Q: In subsection 4.3.9, 100 eigenvectors are used. In such a case, there is also
question about computer memory because the matrix W, which contains the
eigenvectors, is not sparse.

A: Yes. However, W storage requirements for the largest presented case are:

subdomains · rigid body modes · eigenvectors · bytes
bytes per MiB

=
27000 · 6 · 100 · 8

10242

≈ 124 MiB



Q: Str. 37: Vysvětlete minimalizační problém uvedený před koncem stránky.
Obsahuje nedefinované symboly yi a ξi .

A: pp. 36: Let us define a training set

{(x1, y1) , (x2, y2) , . . . , (xm, ym)},

where m is the number of samples, xi ∈ Rn (n ∈ N represents the number of
features) is the ith sample, and yi ∈ {−1, 1} denotes the label (class) of the ith
sample.

argmin
w, b, ξi

1
2

wTw + C
m∑

i=1
ξi s.t.

 yi
(
wTxi − b

)
≥ 1 − ξi ,

ξi ≥ 0,



Q: Could you comment on the effect of shifting the eigenvalues in deflation, as
described in Section 4.3.4? What are the main advantages of this approach? Can
you say when it is important and what is a suitable value of parameter c?

A:

PT
c AW = AW − AW

(
W TAW

)−1 W TAW + cW
(
W TAW

)−1 W TAW
= cW = diag(c, . . . , c)W ,



Q: In Chapter 5, the performance is evaluated by reporting the number of
multiplications with the Hessian. Is this a faithful measure of performance? In
other words, is the computational time proportional to the number of matrix
multiplications? Could you provide a measurement of time demonstrating that
the speedups (e.g., in Tables 5.4 and 5.5) evaluated from the multiplications would
stay about the same if they were determined from the computational time? As
the author has a high- performance implementation and run his tests on actual
supercomputers, it would seem more natural to report time as there can be other
effects hidden in the different algorithms that would make the cost more complex
than just the number of Hessian multiplications.



Method Prob. Hess. Time [s]
Time [%]

SH St SH/StMatVec DotProd VecUp
MPRGP ex1 3907 0.0175 48.83 23.95 27.22 1.0000 1.0000 1.0000
MPPCG ex1 3586 0.0160 48.49 24.82 26.68 1.0895 1.0875 1.0018
MPRGP cube 6544 88.51 95.49 1.58 2.93 1.0000 1.0000 1.0000
MPPCG cube 2766 37.93 95.28 1.94 2.77 2.3659 2.3335 1.0139

• ex1 - 1D Poisson, 1000 unknowns
• cube - 3D elasticity, 20x40x80 finite elements (209,223 unknowns)

Computed on LUMI supercomuter, AMD EPYC 7763 @ 2.45 GHz, single core, Cray clang 16 with -O3
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Motivation and aims

Geotechnical stability analysis:

stability of slopes, foundations, tunnels, etc.

determination of factors of safety (FoS)

estimation of failure mechanisms

Methods based on computational plasticity and �nite elements:

Limit load (LL) method � parametrization of external forces

Strength reduction (SR) method � reduction of selected material parameters

Limit analysis (LA) method � optimization variant of the LL method

Aims of the talk:

to explain ideas of these methods without any knowledge of plasticity and geotechnics

to introduce convex optimization problems in Rn inspired by the LL, LA, SR methods

to suggest convenient abstract assumptions to achieve results expected in geotechnics

Stanislav Sysala et al. Algebraic problems for slope stability Chrastice 7.11.2024 2 / 27



Outline

1 Introduction and preliminaries.

2 Abstract problem inspired by the limit load (LL) method.

3 Abstract problem inspired by the limit analysis (LA) method.

4 Abstract problem inspired by the strength reduction (SR) method.

5 Numerical examples from slope stability analysis.

Stanislav Sysala et al. Algebraic problems for slope stability Chrastice 7.11.2024 3 / 27



1. Introduction and preliminaries.

Preliminaries

Convex optimization problem:

�nd u∗ ∈ Rn : J (u∗) ≤ J (v) ∀v ∈ Rn, J : Rn → R is convex

1. Solution set K is closed and convex, possibly empty.

2. Convexity in Rn implies the continuity.

3. The following statements are equivalent in Rn:

J is coercive, i.e., J (v) → +∞ as ∥v∥ → +∞.

J has at least linear growth at in�nity, i.e.,

∃c1 > 0, c2 ≥ 0 : J (v) ≥ c1∥v∥ − c2 ∀v ∈ Rn

K is nonempty and bounded.

4. If J is continuously di�erentiable then ∇J (u∗) = 0.

Stanislav Sysala et al. Algebraic problems for slope stability Chrastice 7.11.2024 4 / 27



1. Introduction and preliminaries.

Basic problem and assumptions

J (v) := I(v)− b
⊤
v

Assumptions:

(A1) I : Rn → R is convex, continuously di�erentiable

(A2) I is coercive in Rn, i.e. ∃ c1 > 0, c2 ∈ R : I(v) ≥ c1∥v∥ − c2 ∀v ∈ Rn.

(A3) b ̸= 0, F (0) = 0, where F (v) = ∇I(v) for any v ∈ Rn

Basic consequences:

J (u∗) ≤ J (v) ∀v ∈ Rn ⇐⇒ F (u∗) = b

if ∥b∥ < c1 then the solution set K is nonempty and bounded

Proof: J (v) = I(v)− b
⊤
v

(A2)

≥ (c1 − ∥b∥)∥v∥ − c2 ∀v ∈ Rn

Basic aims:

to decide about the solvability (if b is larger)

to �nd the factor of safety (FoS):
1. parametrize the problem, either b or I;
2. FoS = critical value of the used parameter, solvability condition: FoS > 1

Stanislav Sysala et al. Algebraic problems for slope stability Chrastice 7.11.2024 5 / 27



2. Parametrization of b (limit load method)

2. Parametrization of b (limit load method)

Parametrized problem:
Jt(v) := I(v)− tb⊤v

�nd ut ∈ Rn : Jt(ut) ≤ Jt(v) for all v ∈ Rn, or F (ut) = tb

Jt is coercive and Kt is nonempty and bounded for su�ciently small t > 0

If Jt̄ is coercive for some t̄ ≥ 0, then ∃ϵ > 0 such that Jt is coercive for any t ∈ [0, t̄ + ϵ].

De�nition of FoS (limit load factor):

t∗ := supremum of t ≥ 0 such that Kt is nonempty

Basic properties under (A1)− (A3):

t∗ > 0, possibly t∗ = +∞
Kt is nonempty and bounded for any t < t∗

Kt is empty and Jt is unbounded from below for any t > t∗

if t∗ < +∞ then Kt∗ is either empty or unbounded

if t∗ < +∞ then Jt∗ is bounded from below under additional assumptions
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2. Parametrization of b (limit load method)

Illustrative example in R1 satisfying (A1)− (A3)

Jt(v) := I(v)− tb⊤v , where b = 1, I(v) =
{

1

2
v2, |v | ≤ 1

|v | − 1

2
, |v | ≥ 1,

t < 1 ⇐⇒ ut = t � unique solution
t = 1 =⇒ Kt = [1,+∞) � unbounded solution set =⇒ t∗ = 1
t > 1 =⇒ Kt = ∅ � no solution
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2. Parametrization of b (limit load method)

Other examples in R1 satisfying (A1)− (A3)

Jt(v) := I(v)− tb⊤v , where I(v) = e−v + v − 1, b = 1

t∗ = 1, Kt∗ = ∅, Jt∗ is bounded from below

Jt(v) := I(v)− tb⊤v , where I(v) =
{

v2 − 2v , |v | ≤ 1

v − ln v − 2, |v | ≥ 1,
b = 1

t∗ = 1, Kt∗ = ∅, Jt∗ is unbounded from below
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2. Parametrization of b (limit load method)

Continuation techniques for �nding t∗

Direct continuation:

t is a directly enlarged up to the unknown t∗

solvability of F (ut) = tb is not guaranteed

non-convergence of a solver is frequent even for t < t∗

Advanced (indirect) continuation:

use another control variable ω > 0 and a mapping ψ : ω 7→ tω

requirements: ψ is continuous, nondecreasing and ψ(ω) → t∗ as ω → +∞

6

-�
�
�
�

t

ψ(ω)
t∗

ω
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2. Parametrization of b (limit load method)

Construction of the function ψ : ω 7→ tω

Auxiliary problem for given ω > 0:

I(uω) = min
v∈Rn

b
⊤
v=ω

I(v)

The minimum uω exists for any ω > 0 because I is coercive, convex and b ̸= 0.

Optimality condition:

∃tω ∈ Rn : F (uω) = tωb; b
⊤
uω = ω

ωtω = tωb
⊤
uω = F (uω)⊤uω = [F (uω)− F (0)]⊤(uω − 0) ≥ 0 =⇒ tω ≥ 0

Uniqueness of tω :

t1 < t2, Kt1 ̸= ∅ ̸= Kt2 =⇒ b
⊤
u1 < b

⊤
u2 ∀u i ∈ Kti , i = 1, 2

Other properties of the function ψ : ω 7→ tω:

ψ is continuous, nondecreasing and ψ(ω) → t∗ as ω → +∞
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3. Limit analysis (LA) problem

3. Limit analysis (LA) problem: formal derivation

Iω : Rn → R : Iω(v) :=
1
ω
I(ωv), ω > 0, v ∈ Rn

Iω is convex, coercive and continuously di�erentiable for any ω > 0

I(uω) = min
v∈Rn

b
⊤
v=ω

I(v) ⇐⇒ Iω(wω) = min
v∈Rn

b
⊤
v=1

Iω(v), where wω =
uω

ω

ω1 ≤ ω2 =⇒ Iω1 ≤ Iω2

I∞ : Rn → R+ ∪ {+∞} : I∞(v) = lim
ω→+∞

Iω(v), v ∈ Rn

C := {v ∈ Rn | I∞(v) < +∞} � convex cone, 0 ∈ C
I∞ is convex and coercive in C, it holds I∞(v) ≥ c1∥v∥ ∀v ∈ C
I∞ is 1-positively homogeneous, i.e. I∞(αv) = αI∞(v) ∀α ≥ 0, ∀v ∈ C

min
v∈Rn

b
⊤
v=1

Iω(v)
(ω→+∞)−→ inf

v∈Rn

b
⊤
v=1

I∞(v) = inf
v∈C

b
⊤
v=1

I∞(v)
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3. Limit analysis (LA) problem

Limit analysis problem and its investigation

Limit analysis (LA) problem and related FoS:

t∞ = inf
v∈C

b
⊤
v=1

I∞(v), t∞ ≥ t∗, possibly t∞ = +∞

Additional assumptions:

(A4) If vω → v∞ as ω → +∞ and {Iω(vω)} is bounded then

v∞ ∈ C and lim inf
ω→+∞

Iω(vω) ≥ I∞(v∞).

(A5) For any v ∈ C there exists a constant cv > 0 such that

ωI∞(v)− cv ≤ I(ωv) ≤ ωI∞(v) for all ω ≥ 0.

Consequences of (A1)− (A5):

t∞ = t∗, if t∗ < +∞ then {wω} is bounded and its accumulation point solves LA

C is closed =⇒ LA has a minimum if and only if {v ∈ C | b⊤v = 1} ̸= ∅
if t∗ < +∞ then Jt∗ is bounded from below
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3. Limit analysis (LA) problem

Solvability in convex optimization via LA problem

Original convex optimization problem:

�nd u∗ ∈ Rn : J (u∗) ≤ J (v) ∀v ∈ Rn, J (v) = I(v)− b
⊤
v

LA problem:
t∞ = inf

v∈C
b
⊤
v=1

I∞(v)

Solvability conditions under the assumptions (A1)− (A5):

t∞ > 1 ⇐⇒ the solution set K is nonempty and bounded

t∞ = 1 =⇒ K is either empty or unbounded, J is bounded from below

t∞ < 1 =⇒ K is empty, J is unbounded from below

Possible extensions:

for some noncoercive functions (see the next example)

for nonsmooth coercive and convex functions

for selected problems with constraints (e.g. contact problems of elasto-plastic bodies)
[Sysala, Haslinger, Hlavá£ek, �ermák - ZAMM 2015]
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3. Limit analysis (LA) problem

Illustrative example

Au
∗ = b, A ∈ Rn×n

sym � positive semide�nite, b ∈ Rn, b ̸= 0,

Standard solvability condition:

b ⊥ KerA or equivalently b ∈ ImA

Solvability analysis via LA approach:

I(v) =
1
2
v
⊤
Av , I∞(v) = lim

ω→+∞

1
ω
I(ωv) =

{
0, v ∈ KerA,

+∞, v ̸∈ KerA,
C = KerA

t∞ = inf
v∈KerA
b
⊤
v=1

I∞(v) =

{
0, ∃v ∈ KerA : b⊤v = 1 ⇐⇒ b ̸⊥ KerA

+∞, ∀v ∈ KerA : b⊤v ̸= 1 ⇐⇒ b ⊥ KerA

t∞ > 1 ⇐⇒ b ⊥ KerA

Remark:

I is coercive only if A is positive de�nite.
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4. Parametrization of I (strength reduction method)

4. Parametrization of I (SR method)

Parametrization inspired by the strength reduction (SR) method:

Jλ(v) := Iλ(v)− b
⊤
v , λ ≥ λ0, λ0 ∈ (0, 1]

�nd uλ ∈ Rn : Jλ(uλ) ≤ Jλ(v) for all v ∈ Rn, or Fλ(uλ) = b

Related FoS:
λ∗ := supremum of λ ≥ λ0 such that Kλ is nonempty

Basic assumptions:

(B1)λ Iλ : Rn → R is convex and continuously di�erentiable for any λ ≥ λ0, Fλ := ∇Iλ
(B2)λ (a) Jλ0 is coercive in Rn.

(b) If Jλ̄ is coercive for some λ̄ > λ0 then ∃ϵ > 0 such that Jλ̄+ϵ is also coercive.
(c) If Jλ̄ is bounded from below for some λ̄ > λ0, then Jλ is coercive for any λ ∈ [λ0, λ̄).

Remarks:

(B2)λ depends on b � it is natural in geotechnics.

(B2)λ(a) does not hold for larger tension forces in geotechnics.

(B2)λ is observed in geotechnics on numerical examples but cannot be veri�ed a priori.

t-parametrization corresponds to choice Iλ = I/λ and (A1)− (A3) implies (B2)λ.

λ-parametrization is more general than t-parametrization, (B2)λ is very general
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4. Parametrization of I (strength reduction method)

Basic properties of the λ-parametrization

Consequences of (B1)λ − (B2)λ:

λ∗ > λ0

Kλ is nonempty and bounded for any λ < λ∗

if λ∗ < +∞ then Kλ∗ is either empty or unbounded

Next aims within λ-parametrization:

1 Indirect continuation method

2 Limit analysis approach

Other important assumptions (inspired by SSR method):

(B3)λ b ̸= 0, Fλ(0) = ∇Iλ(0) = 0

(B4)λ Iλ is coercive in Rn for any λ ≥ λ0

(B5)λ For any v ∈ Rn, the function λ 7→ Iλ(v) is nonincreasing.
(B6)λ λn → λ, vn → v =⇒ lim

n→+∞
Iλn (vn) = Iλ(v).
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4. Parametrization of I (strength reduction method)

Indirect continuation method

Additional assumptions:

(B7)λ ∃{vλ} ⊂ Rn : lim
λ→+∞

Jλ(vλ) = −∞.

(B8)λ Let λ1 < λ2 and Kλi
̸= ∅, i = 1, 2. Then b⊤u1 ≤ b

⊤
u2 for any u1 ∈ Kλ1 and u2 ∈ Kλ2 .

(B8)
+
λ Let λ1 < λ2 and Kλi

̸= ∅, i = 1, 2. Then b⊤u1 < b
⊤
u2 for any u1 ∈ Kλ1 and u2 ∈ Kλ2 .

Consequences of (B1)λ − (B8)λ:b
⊤
u

∣∣∣ u ∈
⋃

λ≥λ0

Kλ

 = [ω0,+∞), ω0 := min
u∈Kλ0

b
⊤
u

∀ω ≥ ω0 ∃uω ∈ Rn, ∃λω ≥ λ0 : Fλω (uω) = b, b
⊤
uω = ω

(B8)
+
λ =⇒ λω is unique

ψ : ω 7→ λω is continuous, nondecreasing and lim
ω→+∞

ψ(ω) = λ∗
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4. Parametrization of I (strength reduction method)

LA approach for the λ-parametrization

LA problem for �xed λ ≥ λ0:

Iω,λ : Rn → R, Iω,λ(v) :=
1
ω
Iλ(ωv), v ∈ Rn, ω > 0,

I∞,λ : Rn → R+ ∪ {+∞}, I∞,λ(v) := lim
ω→+∞

Iω,λ(v), v ∈ Rn,

Cλ := dom I∞,λ = {v ∈ Rn | I∞,λ(v) < +∞},

ℓ(λ) := inf
v∈Rn

b
⊤
v=1

I∞,λ(v) = inf
v∈Cλ

b
⊤
v=1

I∞,λ(v),

Results under additional assumptions:

ℓ is decreasing and continuous

ℓ(λ) > 1 for any λ < λ∗

ℓ(λ) < 1 for any λ > λ∗

λ∗ < +∞ =⇒ ℓ(λ∗) = 1
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4. Parametrization of I (strength reduction method)

Example inspired by Mohr-Coulomb plasticity

Mλ = {x = (x1, x2)⊤ ∈ R2 | x1 − λ|x2|+ 1 ≥ 0}
λ0 ∈ (0, 1] - given, b = (b1, b2) ∈ intMλ0 , b2 ̸= 0,

Iλ(v) = max
x∈Mλ

{
x⊤v − 1

2
∥x∥2

}
∇Iλ = Fλ � projection of R2 onto Mλ

Fλ(b) = b i� b ∈ Mλ, i.e., uλ = b ∈ Kλ

Kλ = {b} i� b ∈ intMλ, Kλ = ∅ i� b ̸∈ Mλ

if b ∈ ∂Mλ then Kλ is unbounded and λ = λ∗

x1

x2

−1

Cλ2

Cλ2

Cλ1

Cλ1

Mλ1

Mλ1

Mλ2

Mλ2

1

λ∗ =
1+ b1

|b2|
> λ0, Kλ∗ = {b + αw | α ≥ 0}, w =

(
− 1,

1+ b1

b2

)

I∞,λ(v) =

{
−v1, v1 + 1

λ
|v2| ≤ 0

+∞, v1 + 1

λ
|v2| > 0,

Cλ =
{
v = (v1, v2)

⊤ ∈ R2 | v1 +
1
λ
|v2| ≤ 0

}
,

b2 ̸= 0 =⇒ ℓ(λ) =
1

λ|b2| − b1
∀λ ≥ λ0 =⇒ ℓ(λ∗) = 1

if b1 < −1 then the λ-parametrization is not meaningful!
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5. Examples from slope stability analysis

5. Examples from slope stability analysis

Model and methods:

Elastic-perfectly plastic model with the Mohr-Coulomb yield criterion

Davis' approximation of nonassociated plastic �ow rule

Finite element method (mostly P2 elements)

Numerical methods:

indirect continuation technique with adaptive enlargement of ω:

either F (uω) = tωb, b
⊤
uω = ω or Fλω (uω) = b, b

⊤
uω = ω

Semismooth Newton's method with damping and regularization

Iterative solvers for linearized systems related to 3D problems:
� de�ated �exible GMRES
� preconditioner: algebraic multigrid and separate displacement method

Implementation:

Matlab codes, see https://github.com/sysala/SSRM

Meshes imported from GMSH
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5. Examples from slope stability analysis

Numerical example I � homogeneous slope in 2D

Setting the problem:

Young's modulus: E = 40MPa

Poisson's ration: ν = 0.3

cohesion, c = 6 kPa

friction and dilatancy angles: ϕ = ψ = 30◦

slope is loaded by self-weight

Dirichlet boundary conditions on the left, right and bottom

uniform mesh with 5,200 elements and 20,840 unknowns

FoS and failure mechanism:
t∗ = 1.08, λ∗ = 1.02
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5. Examples from slope stability analysis

Continuation curves and the function ℓ
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5. Examples from slope stability analysis

Dependence of FoS on the friction angle
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5. Examples from slope stability analysis

Numerical example II - heterogeneous slope in 3D

Setting the problem:

geometry from [Zhou et al., Water, 2020]

only SR method

comparison of linear and quadratic �nite elements (P1 and P2 elements)

meshes with 75�600 thousands DoFs created in SW GMSH
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5. Examples from slope stability analysis

Visualization of the curve ω 7→ λω and failure

1 1.5 2 2.5 3

Control variable - 107

1

1.2

1.4

1.6

1.8

2

2.2

S
tr

en
gt
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du
ct
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n 
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 -

 

P1, lvl2
P1, lvl4
P2, lvl1
P2, lvl2
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5. Examples from slope stability analysis

Local mesh adaptivity

re�nement on basis of the results from the original (coarser) mesh

more accurate failure zones and FoS
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7. Conclusion

7. Conclusion

Concluding remarks:

Original analysis of the stability methods on abstract algebraic problems

Deriving of advanced continuation techniques

Development of e�cient iterative solvers for 3D problems

Development of in-house codes in Matlab, see https://github.com/sysala/SSRM

Cooperation with the SW companies FEM Consulting and Dlubal Software
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